4-2.Quadratic Equations and Inequations
normal

Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha  + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is

A

$x^2 + 3x -5$

B

$x^2 -3x -5$

C

 $-x^2 + 3x + 5$

D

none of these

Solution

$\alpha  + \beta  = \frac{3}{5}$

${\alpha \beta}  {=-\frac{1}{5}}$

$\left[ {(\alpha  + \beta )x – \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} \cdots  \cdots  \cdots } \right]$

$=\left(\alpha \mathrm{x}-\frac{(\alpha \mathrm{x})^{2}}{2}+\frac{(\alpha \mathrm{x})^{3}}{3} \ldots \ldots \ldots\right)+\left(\beta \mathrm{x}-\frac{(\beta \mathrm{x})^{2}}{2}+\frac{(\beta \mathrm{x})^{3}}{3} \ldots \ldots\right)$

$=\ln (1-\alpha x)+ln(1-\beta x)$

$=\ln ((1-\alpha x)(1-\beta x))$

$ = l{\rm{n}}\left( {1 – {\rm{x}}(\alpha  + \beta ) + \alpha \beta {{\rm{x}}^2}} \right)$

$=\ln \left(1-x \frac{3}{5}-\frac{1}{5} x^{2}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.