Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is
$x^2 + 3x -5$
$x^2 -3x -5$
$-x^2 + 3x + 5$
none of these
The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is
Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by
One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is
The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is